Provider: JSTOR http://www.jstor.org
Database: JSTOR
Content: text/plain; charset="us-ascii"
TY - JOUR
TI - Conway’s Subprime Fibonacci Sequences
AU - Richard K. Guy
AU - Tanya Khovanova
AU - Julian Salazar
AB - Summary It’s the age-old recurrence with a twist: sum the last two terms and if the result is composite, divide by its smallest prime divisor to get the next term (e.g., 0, 1, 1, 2, 3, 5, 4, 3, 7,…). These sequences exhibit pseudo-random behavior and generally terminate in a handful of cycles, properties reminiscent of 3x + 1 and related sequences. We examine the elementary properties of these “subprime” Fibonacci sequences.
C1 - Full publication date: December 2014
DO - 10.4169/math.mag.87.5.323
EP - 337
IS - 5
JO - Mathematics Magazine
PB - Mathematical Association of America
PY - 2014
SN - 0025570X, 19300980
SP - 323
UR - http://www.jstor.org/stable/10.4169/math.mag.87.5.323
VL - 87
Y2 - 2021/02/26/
ER -