Abstract Alcuin of York (c. 740–804) lived over four hundred years before Fibonacci. Like Fibonacci, Alcuin has a sequence of integers named after him. Although not as well known as the Fibonacci sequence, Alcuin’s sequence has several interesting properties. The purposes of this note are to acquaint the reader with Alcuin’s sequence, to give the simplest available proofs of various formulas for Alcuin’s sequence, and to showcase a new discovery about the period of Alcuin’s sequence modulo a fixed integer.
The Monthly publishes articles, as well as notes and other features, about mathematics and the profession. Its readers span a broad spectrum of mathematical interests, and include professional mathematicians as well as students of mathematics at all collegiate levels. Authors are invited to submit articles and notes that bring interesting mathematical ideas to a wide audience of Monthly readers. The Monthly's readers expect a high standard of exposition; they expect articles to inform, stimulate, challenge, enlighten, and even entertain. Monthly articles are meant to be read, enjoyed, and discussed, rather than just archived. Articles may be expositions of old or new results, historical or biographical essays, speculations or definitive treatments, broad developments, or explorations of a single application. Novelty and generality are far less important than clarity of exposition and broad appeal. Appropriate figures, diagrams, and photographs are encouraged. Notes are short, sharply focused, and possibly informal. They are often gems that provide a new proof of an old theorem, a novel presentation of a familiar theme, or a lively discussion of a single issue.
The Mathematical Association of America (MAA) is the largest professional society that focuses on undergraduate mathematics education. Our members include university, college, and high school teachers; graduate and undergraduate students; pure and applied mathematicians; computer scientists; statisticians; and many others in academia, government, business, and industry. We welcome all who are interested in the mathematical sciences. The mission of the MAA is "to advance the mathematical sciences, especially at the collegiate level." This mission guides our core interests: Education: We support learning in the mathematical sciences by encouraging effective curriculum, teaching, and assessment at all levels. Research: We support research, scholarship, and its exposition at all appropriate levels and venues, including research by undergraduates. Professional Development: We provide resources and activities that foster scholarship, professional growth, and cooperation among teachers, other professionals, and students. Public Policy: We influence institutional and public policy through advocacy for the importance, uses, and needs of the mathematical sciences. Public Appreciation: We promote the general understanding and appreciation of mathematics. We encourage students of all ages, particularly those from underrepresented groups, to pursue activities and careers in the mathematical sciences.
This item is part of a JSTOR Collection.
For terms and use, please refer to our Terms and Conditions
Copyright the Mathematical Association of America 2012
Request Permissions