Ginkgo

Ginkgo: The Tree That Time Forgot

Peter Crane
WITH A FOREWORD BY PETER RAVEN
Copyright Date: 2013
Published by: Yale University Press
Pages: 352
https://www.jstor.org/stable/j.ctt32bhvn
  • Cite this Item
  • Book Info
    Ginkgo
    Book Description:

    Perhaps the world's most distinctive tree, ginkgo has remained stubbornly unchanged for more than two hundred million years. A living link to the age of dinosaurs, it survived the great ice ages as a relic in China, but it earned its reprieve when people first found it useful about a thousand years ago. Today ginkgo is beloved for the elegance of its leaves, prized for its edible nuts, and revered for its longevity. This engaging book tells the full and fascinating story of a tree that people saved from extinction-a story that offers hope for other botanical biographies that are still being written.

    Inspired by the historic ginkgo that has thrived in London's Kew Gardens since the 1760s, renowned botanist Peter Crane explores the evolutionary history of the species from its mysterious origin through its proliferation, drastic decline, and ultimate resurgence. Crane also highlights the cultural and social significance of the ginkgo: its medicinal and nutritional uses, its power as a source of artistic and religious inspiration, and its importance as one of the world's most popular street trees. Readers of this extraordinarily interesting book will be drawn to the nearest ginkgo, where they can experience firsthand the timeless beauty of the oldest tree on Earth.

    eISBN: 978-0-300-19047-2
    Subjects: Botany & Plant Sciences, History of Science & Technology

Table of Contents

  1. Front Matter
    (pp. i-viii)
  2. Table of Contents
    (pp. ix-xii)
  3. Foreword
    (pp. xiii-xvi)
    Peter H. Raven

    Perhaps the best known and most easily recognized of the world’s 100,000 kinds of trees, ginkgo stands out by virtue of its unique features, amazing history, and long association with people. With their distinctive fan-shaped leaves and tall trunks, ginkgo trees adorn parks, streets, and recreational areas throughout the temperate regions of the world. When the weather turns sharp, all of the leaves suddenly turn a brilliant yellow, dropping soon after to lay a lovely, bright yellow carpet under each tree. Ginkgo trees are bisexual, some producing seeds and others only pollen-bearing organs. The seeds are naked, as in other...

  4. Preface
    (pp. xvii-xx)
  5. PART I Prologue

    • 1 Time
      (pp. 3-7)

      To most people ginkgo is either the tree with the smelly “fruits” or the plant that is good for your memory, but that unmistakable acrid aroma, or the leaf extract in the health food store, is only part of what makes ginkgo unique. Common on city streets from Beijing to London and Tokyo to New York, ginkgo is an increasingly common backdrop to the bustle of modern city life. It is hard to imagine that these trees, now towering above cars and commuters, grew up with the dinosaurs and have come down to us almost unchanged for 200 million years....

    • 2 Trees
      (pp. 8-15)

      Among my clearest memories as a student beginning in botany are the giant Atlantic cedars that dominated the center of campus at the University of Reading. They were part of my life for nearly a decade, and still today every time I see one of these majestic trees, with their sparse flattened branching and truncated crowns, it takes my mind back to what now seems like a different life. Together with the giant sequoias scattered across campus, and the gnarled strawberry tree near Whiteknights House, the Atlantic cedars were planted at the end of the eighteenth century by the Marquess...

    • 3 Identity
      (pp. 16-24)

      William Jackson Hooker, the first director of the Royal Botanic Gardens, Kew, was born in 1785. By then the ginkgo that stands in the historic heart of Kew Gardens was becoming mature. Half a century later, when Hooker came to Kew to create a national botanic garden, it was nearly a hundred years old; it had already outlived King George III, Sir Joseph Banks, and the others from the eighteenth century who had presided over its planting. Hooker would have seen this tree nearly every day and he would have recognized it as one of the more unusual and important...

  6. PART II The Living Tree

    • 4 Energy
      (pp. 27-34)

      The elegance of a ginkgo leaf begins with its stalk; it is long, sometimes a little longer than seems quite right for the length of the blade, but the two flow easily together. As the blade expands, the two nerves, which pass concealed through the leaf stalk, emerge as fine veins: each supplies one half of the leaf. The veins divide and diverge relentlessly within the blade; only rarely is the pattern disturbed by veins that rejoin.¹

      Leaves are of vital importance to a living ginkgo tree; they provide energy independence. Leaves are clean-energy factories; natural, mass-produced solar panels, each...

    • 5 Growth
      (pp. 35-41)

      Matthew Hargraves, a curator at the Center for British Art at Yale, points out that in the late eighteenth to mid-nineteenth century, “the tree nearly supplanted the human figure as the best test of an artist’s mettle.” Any artist looking closely at ginkgo would quickly have seized upon its unusual form. Even when the leaves are gone, ginkgo is distinctive; for decades at the beginning of their long lives, ginkgo trees have a sparse crown, with widely spaced branches that poke out like long, thin, spiky fingers. Their characteristic silhouette differs from that of any other tree. Unlike the leaves,...

    • 6 Stature
      (pp. 42-52)

      Puccini’s operaMadama Butterfly, set in Japan in 1904, begins in the garden terrace of a small house overlooking Nagasaki Harbor. The tragic story of Cho-Cho San, which Puccini adapted from the novel by John Luther Long, was just one expression of increased fascination in the West with all things Japanese in the decades after Commodore Perry’s Black Ships forced the reclusive nation into contact with the outside world. Much has been written about the possible models for Long’s story: connections have been made to the bookMadame Chrysanthemumby Pierre Loti, a French naval officer who was in Nagasaki...

    • 7 Sex
      (pp. 53-59)

      All living ginkgos are connected, part of an unbroken chain of genetic continuity that has survived through thousands of generations. With Darwinian hindsight we recognize now that this continuity links all living ginkgos to their ancestors that grew more than 200 million years ago, and that has been sustained, as in all living organisms, by an innate propensity for self-perpetuation through reproduction.¹

      Reproduction in plants, just like reproduction in humans, involves sex: the bringing together and fusion of reproductive cells, usually but not always from two parents, to create an embryo that develops into a new individual. Each sex cell—...

    • 8 Gender
      (pp. 60-65)

      The most widely accepted explanation for why ginkgo and other trees have separate male and female plants is that it eliminates negative effects that might come from extreme inbreeding if self-pollination were followed by self-fertilization. This conjecture is supported by a great deal of evidence that plants produced by self-fertilization are less successful and leave fewer offspring in the next generation than those arising from cross-fertilization. Given this principle, it is not surprising, as observed by Darwin, that where male and female parts occur together in the same flower, there are often mechanisms or structures to prevent self-fertilization. However, having...

    • 9 Seeding
      (pp. 66-72)

      I like to think of the old male ginkgo that grows at Kew as one of the celebrity ginkgo trees of the world: a tree worth making a special effort to meet. As a living connection to King George III and Sir Joseph Banks, as well as the early introduction of ginkgo into the West, it would have a rich story to tell if you could engage it in conversation. However, an equally special celebrity ginkgo grows on the other side of the world in the Koishikawa Botanical Garden at the University of Tokyo. It is a living link to...

    • 10 Resilience
      (pp. 73-78)

      Brian Mathew is one of those botanical enthusiasts for whom a lifetime at Kew was an irresistible attraction. People who somehow have plants in their blood often end up working at Kew for their entire careers, and their connections to the place, through their friends and through their plants, persist long after retirement. In Brian’s case, most of his working life was spent in the vast collection of preserved plants at Kew. Begun by William Jackson Hooker, this massive herbarium now contains about eight million specimens of dried plants. It may be the largest of its kind in the world,...

  7. PART III Origin and Prehistory

    • 11 Origins
      (pp. 81-88)

      Carl Linnaeus, the eighteenth-century naturalist who coined the nameGinkgo biloba, stands with Arrhenius and Celsius as one of the foremost of all Swedish scientists. When you arrive at Arlanda Airport in Stockholm, Linnaeus is among the collage of well-known Swedish citizens who welcome you to their “hometown,” and his image appears on the one hundred–kronor banknote. Linnaeus spent his entire life in Europe, but his name is known worldwide, in large part because of his intrepid students who journeyed all over the globe to collect plants and bring them back for study. Linnaeus was the leader in efforts...

    • 12 Ancestry
      (pp. 89-96)

      To connect living ginkgo to the extinct seed plants that were alive between about 190 million and 360 million years ago, the traditional approach is to look for ancestors, beginning with those fossils that seem securely related to modern ginkgo, then working outward and backward to consider other fossils that might provide a connection to other kinds of seed plants.Ginkgo cordilobatafrom Afghanistan shows that plants with leaves like those of living ginkgo had already evolved by the Early Jurassic, between about 175 million and 200 million years ago. Similar leaves are also known, slightly earlier in the fossil...

    • 13 Relationships
      (pp. 97-103)

      There are many fossil plants, especially from the Permian and Triassic, which may be important for understanding the origin of living ginkgo, but, as in the case of glossopterids,Kannaskoppifolia-Kannaskoppia, andTrichopitys, it is hard to decide which are the most important. In some cases this is because the fossils are not known in sufficient detail to allow useful comparison, but there is also the problem of how to account for and understand the similarities and differences we observe. For example, should we focus more on the leaves, or is it similarities of the seeds that should be given greater...

    • 14 Recognition
      (pp. 104-110)

      Many of the most famous figures in the history of plant paleontology have written about ginkgo, but none has done more to illuminate its long evolutionary history than the Chinese paleobotanist Zhou Zhiyan. Beginning with a series of influential studies in the 1980s, Zhou discovered several different kinds of early ginkgolike plants and came to understand them not just from their leaves but also from their seeds and other parts. He also placed his new discoveries in the broader context of what earlier researchers had learned. As a result, the history of the ginkgo lineage is now better understood, and...

    • 15 Proliferation
      (pp. 111-118)

      Zhou Zhiyan arrived at the University of Reading in September of 1980, and for almost a year we worked side by side in the same laboratory. I was in my mid-twenties and coming to the end of my first job in the Department of Botany. Zhou was in his late forties and a senior scientist at the Institute of Geology and Palaeontology of the Chinese Academy of Sciences in Nanjing. He was on his first trip outside China. At that time, the competition for such opportunities was fierce, and Zhou was among the first Chinese scientists allowed to travel overseas...

    • 16 Winnowing
      (pp. 119-124)

      Since Zhou Zhiyan began his work in the Yima coal mine a quarter of a century ago, what we know about the fossil record of ginkgo and its relatives has expanded dramatically. New information and new discoveries continue to accumulate and have revealed an astonishing variety of ancient ginkgolike plants. This unexpected diversity changes the way we think about the evolution of the single living species. Studies of fossil leaves had hinted at the existence of such diversity, but until more was known about their corresponding seeds and other parts, the real plants lurking behind the isolated leaf fossils remained...

    • 17 Persistence
      (pp. 125-131)

      My own small contribution to what we know about the prehistory of ginkgo came from work on fossils much younger than those from the Triassic and Jurassic studied by Tom Harris and Zhou Zhiyan. It began in the late summer of 1982 as I was driving back to Indiana University after a long trip collecting fossils with my colleague David Dilcher. I was just wrapping up a year of work in David’s laboratory before moving to the Field Museum in Chicago. The trip had started with fossil hunting in the drylands of eastern Oregon, followed by a long swing through...

    • 18 Prosperity
      (pp. 132-140)

      John Starkie Gardner is not among the truly great paleontologists of the later nineteenth century, but he was nevertheless energetic and talented. Between about 1879 and 1887 he produced several publications on fossil plants, including the two-volumeBritish Eocene Flora, before abruptly bringing all his paleontological work to a close and devoting himself instead to a second career as an expert on decorative ironworks. He created Victoria Gate in London’s Hyde Park and the iron gates and screens at Edinburgh’s Holyrood Palace. As such a radical and sudden change of direction might suggest, Gardner was a forceful character who held...

  8. PART IV Decline and Survival

    • 19 Constraint
      (pp. 143-151)

      Today, ginkgo can be grown easily in many parts of the world, including over most of Europe and the United States, as well as much of eastern Asia, but it is confined mostly to what might loosely be called the temperate regions. For example, in Europe, ginkgo flourishes from Paris in northern France to Montpellier in the south, and the connection to Goethe has made ginkgo popular throughout Germany. It is not a tree that survives across most of Finland, though, or that thrives at the other end of Europe’s climatic spectrum—for example, in Sicily or the Greek Isles,...

    • 20 Retreat
      (pp. 152-155)

      Between about thirty-five million and sixty-five million years ago ginkgo was widespread across the Northern Hemisphere, but that period of great prosperity eventually came to an end as the climate began to cool. In the Southern Hemisphere, the ginkgolike plants that had persisted from the Cretaceous were still part of southern landscapes, but they too soon disappeared. The last evidence of ginkgolike plants in the Southern Hemisphere is in Tasmania about forty million to sixty-five million years ago. After that, even though there are many younger fossil floras from Australia and South America, ginkgolike plants seem to have been lost...

    • 21 Extinction
      (pp. 156-161)

      Given its long fossil history, the presence of ancient ginkgo across much of the Northern Hemisphere for most of the past 65 million years is not so surprising. Ginkgo and its extinct relatives were seemingly nearly everywhere on the planet for eons, and despite their clear decline about 100 million years ago, ginkgo managed to persist in many places. However, looking back from today, the fact that ginkgo was growing wild in Bulgaria and Greece just 5 million years ago nonetheless seems strange. It reminds us that not so long ago the world was a very different place. In the...

    • 22 Endurance
      (pp. 162-167)

      The oldest and largest ginkgo trees on the planet occur today in eastern Asia, and it is only in China that we find the combination of really ancient trees of large size growing alongside seedlings that are regenerating naturally in what appears to be a more or less wild situation. However, whether truly wild populations of ginkgo trees still survive in China is an open question. One problem is that China is a vast country; even today it is not completely explored from a botanical point of view. Many new species of plants continue to be described from China, and...

    • 23 Relic
      (pp. 168-174)

      With recent rapid developments in plant molecular biology, new tools have become available to help understand the history of ginkgo in eastern Asia over the past few hundreds of thousands of years. All ginkgo trees look more or less the same from the outside, but we can now look into their dna to see just how similar or different they really are. We can sample different ginkgo trees growing in different places to see how they might be related to one another and also how much variability there is in their genetic makeup. We can use evidence from dna to...

  9. PART V History

    • 24 Antiquity
      (pp. 177-183)

      Ginkgo now grows all around the world, but almost everywhere it has been brought there by people; for most of us ginkgo is a plant of parks, gardens, or city streets, all human-created habitats. These trees are also of modest size; nowhere outside eastern Asia are there ginkgo trees of truly massive proportions. Even the Old Lion at Kew, one of the oldest trees in Europe, has a trunk only a little more than five feet in diameter. In China, Japan, and Korea, the situation is different; here there are some true giants, and in a few places in China,...

    • 25 Reprieve
      (pp. 184-189)

      It is not known exactly when, or why, ginkgo first became associated with people, but inScience and Civilization in China, Nicholas Menzies finds the two earliest references to ginkgo unconvincing. The dating to the sixth century of the old tree at Fu-Yen Ssu Monastery is known to be unreliable. The other, the mention of a fruit referred to asphing chungin the poem “Rhapsody on the Capital of Wu” by Tso Ssu, which dates from the Jin Dynasty in the third century, has nothing to link it to ginkgo except mention of its silvery color. Similarly, while ginkgo...

    • 26 Voyages
      (pp. 190-194)

      In May 1975 a fishing boat working in an area of high tides and strong currents off the northwest coast of Jeungdo Island, off the southwestern Korean Peninsula, dredged up in its nets six pieces of light green Chinese celadon ceramics and white porcelain: the first hint of the Shinan Ship, a discovery that ranks alongside theVasaof Sweden and theMary Roseof Britain among the most remarkable in underwater archaeology. At first the Korean authorities were uncertain how to proceed, but when the site attracted looters in the autumn of 1976, a high-profile salvage project was launched...

    • 27 Renewal
      (pp. 195-203)

      After millennia of decline, the reprieve that ginkgo found through its association with the cultures of eastern Asia was followed in the eighteenth century by an even more marked turnaround in its fortunes. This renewal began on September 25, 1690, with the arrival of the German-born physician-botanist Engelbert Kaempfer in what is now the heart of the Japanese city of Nagasaki. Kaempfer stayed just two years, but what he learned, and what he later wrote, distinguish him in the West as “the first interpreter of Japan.” He was also the first to introduce ginkgo to Western science.¹

      Located on the...

    • 28 Naming
      (pp. 204-208)

      Perhaps the most curious thing about Kaempfer’s introduction of ginkgo to the West is the word itself, and much has been written about how Kaempfer came up with this seemingly strange name. To understand how and why Kaempfer fastened upon the nameginkgoit is important to understand how the plant was referred to in Japan around the time he was there in the late seventeenth century.¹

      When ginkgo was introduced into Japan, perhaps in the thirteenth or fourteenth century, the names most commonly attributed to it in China probably came with it. Among them was the name still used...

    • 29 Resurgence
      (pp. 209-214)

      Through hisAmoenitatum Exoticarum, Kaempfer was the first to bring ginkgo to the attention of Western science, but it is unlikely that he was the first to introduce living seeds or plants to Europe. This probably did not happen until later, perhaps not until three or four decades into the eighteenth century. The evidence for this time lag between Kaempfer’s recognition of ginkgo and its cultivation in the West is mainly negative, but in this case it has at its center the most reputable source of information on all the plants known to science at that time: the Swedish physician...

  10. PART VI Use

    • 30 Gardens
      (pp. 217-225)

      Ginkgo owes its resurgence in historical times not just to its utilitarian value but also to some kind of irresistible biological charisma that has taken hold in both Eastern and Western cultures. In the East, ginkgo may have made the transition from wild forests to gardens almost by accident. Buddhist and Taoist priests have long nurtured tracts of forest with ancient trees around their temples. Chinese and Japanese Buddhism in particular believe that achieving nirvana, a state of spiritual liberation, is available to all life, including trees. With their unusual leaves and bizarre chi-chis, ancient ginkgos perhaps embodied an element...

    • 31 Nuts
      (pp. 226-233)

      Long before it became popular in gardens, or as a memory-enhancing supplement, ginkgo was valued for its edible nuts. With a plump, soft, partly creamy, partly waxy white “meat” not much bigger than a peanut, the ginkgo nut has a taste that has been variously described as like “mild Swiss cheese,” “pine nuts,” “potatoes crossed with sweet chestnuts,” “green pea crossed with Limburger cheese,” or just “fishy.” Today, despite their enigmatic flavor, ginkgo nuts are common in the cuisines of China, Japan, and Korea, and they can be bought almost everywhere that people from those parts of the world have...

    • 32 Streets
      (pp. 234-241)

      Ginkgo is among the most widely planted street trees in the world. With most of the world’s people now living in cities, it is seen by millions of people every day. Along with other street trees, ginkgo has a role to play in sustaining connections between people and the natural world. In the United States alone, the trees growing in backyards, streets, parks, and the urban reserves comprise about 74.4 billion trees that account for about 8 percent of the total national tree canopy. These trees are important in the lives of those three-quarters of Americans who work and live...

    • 33 Pharmacy
      (pp. 242-250)

      One Friday afternoon at Kew, at the end of a harrowing week, my long-suffering secretary confided that she was among the estimated ten million Europeans regularly taking ginkgo leaf extract. “Oh yes,” she said, “I’ve been taking ginkgo for my memory for quite a while—when I remember.” Ginkgo is now a common herbal medicine in the West. In the East, interest in the health-giving properties of ginkgo goes back much farther. For almost as long as ginkgo has been prized for its nuts, it has also been valued in medicine.¹

      According to some sources, the medicinal use of ginkgo...

  11. PART VII Future

    • 34 Risk
      (pp. 253-257)

      Perhaps more than any others, Dave Raup and Jack Sepkoski, working at the University of Chicago in the 1980s and early 1990s, initiated the modern quantitative study of extinction in the fossil record. Dave led science at the Field Museum when I arrived there in 1982, but his move to the University of Chicago later that year gave new impetus to the development of that university’s distinctive tradition of paleontology, which still continues. Along with Steve Stanley, at Johns Hopkins University, Dave was the driving force behind the development of a fresh and analytical way to study the fossil record...

    • 35 Insurance
      (pp. 258-263)

      In a famous phrase fromA Sand County Almanac, Aldo Leopold, the best-known graduate of the Yale School of Forestry and Environmental Studies, argued: “If the biota, in the course of aeons, has built something we like but do not understand, then who but a fool would discard seemingly useless parts? To keep every cog and wheel is the first precaution of intelligent tinkering.” The message for modern conservation is clear, but too often we are forced to make choices, and exactly how conservation priorities should be determined is a complicated issue on which there are many different views. Nevertheless,...

    • 36 Gift
      (pp. 264-271)

      In June 1992 the nations of the world gathered in Rio de Janeiro at the first Earth Summit. Attended by 172 countries, and more than a hundred heads of state, as well as 2,400 representatives of nongovernmental organizations, it was one of the largest United Nations conferences ever convened. The aim was to address increasing concern about deterioration of the global environment. Greater awareness of pollution and declining environmental quality, as well as their impacts on human health, had been building since the 1950s and 1960s. Rio was a culmination of that process and a key moment in the growth...

    • 37 Legacy
      (pp. 272-278)

      Tony Kirkham, who runs the arboretum at Kew, has become something of a celebrity. He featured prominently in the bbc programsA Year at Kew, which appeared on British television between 2004 and 2006. He then graduated to a television series of his own:The Trees That Made Britain. With his colleague John Hammerton he explored the contribution of trees to British history, landscape, and culture, from the preservation of ancient yews in rural churchyards to the use of their wood in the medieval longbow. He sampled cider made from the British apples in Somerset, went sailing in ash-frame coracles,...

  12. Appendix: List of Common Plant Names Used in the Text and Latin Equivalents
    (pp. 279-284)
  13. Notes
    (pp. 285-334)
  14. Bibliography
    (pp. 335-361)
  15. Illustration Credits
    (pp. 362-364)
  16. Index
    (pp. 365-384)