What Science Is and How It Works

What Science Is and How It Works

GREGORY N. DERRY
Copyright Date: 1999
Pages: 328
https://www.jstor.org/stable/j.ctt7svbw
  • Cite this Item
  • Book Info
    What Science Is and How It Works
    Book Description:

    How does a scientist go about solving problems? How do scientific discoveries happen? Why are cold fusion and parapsychology different from mainstream science? What is a scientific worldview? In this lively and wide-ranging book, Gregory Derry talks about these and other questions as he introduces the reader to the process of scientific thinking. From the discovery of X rays and semiconductors to the argument for continental drift to the invention of the smallpox vaccine, scientific work has proceeded through honest observation, critical reasoning, and sometimes just plain luck. Derry starts out with historical examples, leading readers through the events, experiments, blind alleys, and thoughts of scientists in the midst of discovery and invention. Readers at all levels will come away with an enriched appreciation of how science operates and how it connects with our daily lives.

    An especially valuable feature of this book is the actual demonstration of scientific reasoning. Derry shows how scientists use a small number of powerful yet simple methods--symmetry, scaling, linearity, and feedback, for example--to construct realistic models that describe a number of diverse real-life problems, such as drug uptake in the body, the inner workings of atoms, and the laws of heredity.

    Science involves a particular way of thinking about the world, and Derry shows the reader that a scientific viewpoint can benefit most personal philosophies and fields of study. With an eye to both the power and limits of science, he explores the relationships between science and topics such as religion, ethics, and philosophy. By tackling the subject of science from all angles, including the nuts and bolts of the trade as well as its place in the overall scheme of life, the book provides a perfect place to start thinking like a scientist.

    eISBN: 978-1-4008-2311-6
    Subjects: History of Science & Technology

Table of Contents

  1. Front Matter
    (pp. i-vi)
  2. Table of Contents
    (pp. vii-viii)
  3. PREFACE
    (pp. ix-2)
  4. Prologue WHAT IS SCIENCE?
    (pp. 3-8)

    As the opening quotations by two noted philosophers indicate, opinions about science span a wide range. But it’s not clear whether these two eminent thinkers are really talking about the same thing when they refer to “science.” Cassirer is discussing science as an abstract method to bring constancy and regularity to the world. Mumford, in contrast, is considering science as a driver of technology, a method to bring about practical changes in life. Both of these viewpoints contain an element of truth; neither is comprehensive. A simple, brief, and comprehensive way to define science is in fact not so easy...

  5. PART I. EXPLORING THE FRONTIERS OF SCIENCE:: HOW NEW DISCOVERIES ARE MADE IN THE SCIENCES
    • Chapter 1 A BIRD’S EYE VIEW: THE MANY ROUTES TO SCIENTIFIC DISCOVERY
      (pp. 11-25)

      How does a scientist go about making a discovery? The idea that there’s a single answer to this question (the “scientific method”) persists in some quarters. But many thoughtful people, scientists and science critics alike, would now agree that science is too wide-ranging, multifaceted, and far too interesting for any single answer to suffice. No simple methodology of discovery is available for looking up in a recipe book. To illustrate some of the rich variety in the ways scientists have discovered new knowledge, I have chosen five cases to recount in this chapter: the accidental discovery of x-rays; the flash...

    • Chapter 2 NATURE’S JIGSAW: LOOKING FOR PATTERNS AS A KEY TO DISCOVERY
      (pp. 26-34)

      To discover an underlying coherence and regularity in nature, buried within reams of observational and experimental data that has so far defied understanding, is at the heart of science. Finding such previously unseen patterns is one of the key processes of scientific discovery. In this chapter, we look at the stories of two highly important discoveries. Each story has its own interesting features, but they both have in common the finding of a pattern, like the pieces of a jigsaw puzzle falling into place once you see the picture they form.

      Our concept of an element, a chemical substance that...

    • Chapter 3 NEW VISTAS: EXPANDING OUR WORLD WITH INSTRUMENTATION
      (pp. 35-41)

      We extend our powers of observation by the use of instruments. We sometimes increase the range of our senses into new regimes of size or intensity, but we can also do more than just magnify our usual means of perceiving the world. By using appropriate instruments, we can even “observe” new phenomena that our senses can’t detect at all. Chemists, for example, learn about the motions of atoms within a molecule by measuring the infrared rays that a molecule emits but our eyes can’t see. Beyond extending the range of our senses, there is another way in which instruments help...

    • Chapter 4 CLOSE, BUT NO CIGAR: DISCREPANCIES AS A TRIGGER TO DISCOVERY
      (pp. 42-51)

      Seeing what you do not expect can be a powerful impetus to develop new ideas. Sometimes this process is obvious. If you believe that yellow fruits don’t exist, then seeing a banana will modify your beliefs. This is progress; it’s a primitive example of scientific discovery resulting from an observed discrepancy. Most examples are more complicated. There are a number of episodes in the history of science where initially small discrepancies eventually instigated major scientific revolutions. Two celebrated cases in physics are the Michaelson-Morley experiment (which was eventually explained by the theory of relativity) and the blackbody radiation measurements (which...

    • Chapter 5 INGREDIENTS FOR A REVOLUTION: THEMATIC IMAGINATION, PRECISE MEASUREMENTS, AND THE MOTIONS OF THE PLANETS
      (pp. 52-66)

      The discovery of how and why the planets move, related in this chapter, is intimately tied to the beginnings of modern science. It’s worth remembering, however, that modern science didn’t exist until after this story had already ended. For that reason, the motivations and thinking patterns of the people who contributed to our understanding of the motions of the planets were vastly different from our modern-day point of view. An understanding of the planetary motions emerged only slowly from a strange tangle of metaphysical assumptions, thematic hypotheses, and observations of the night sky. When a true understanding was finally achieved,...

  6. PART II. MENTAL TACTICS:: SOME DISTINCTIVELY SCIENTIFIC APPROACHES TO THE WORLD
    • Chapter 6 A UNIVERSE IN A BOTTLE: MODELS, MODELING, AND SUCCESSIVE APPROXIMATION
      (pp. 69-88)

      In trying to understand nature, we rarely attempt to grasp completely every possible detail. If we did, we’d be overwhelmed by the mass of inconsequential information. As a result, we would miss the truly interesting patterns and relationships that give us scientific insight. An important tool to achieve scientific understanding is the construction of conceptual models. Models, in the sense in which I’m using the word here, are imaginary simulations of the real natural systems we are trying to understand. The models include only properties and relationships that we need in order to understand those aspects of the real system...

    • Chapter 7 THINKING STRAIGHT: EVIDENCE, REASON, AND CRITICAL EVALUATION
      (pp. 89-106)

      A well-constructed scientific argument, defending a scientific conclusion, generally rests upon two foundations: reliable empirical evidence and sound logical reasoning. Of course, there have been scientific arguments that weren’t based on good evidence and reasoning, but these shoddy arguments (and the conclusions based on them) generally don’t withstand the test of time. The point isn’t that we always have proper evidence and reasoning in the sciences, the point is that we alwaysshouldhave these things. This point is not trivial. In some areas of human thought, conclusions may quite properly not be based on logic and evidence. In some...

    • Chapter 8 THE NUMBERS GAME: USES OF QUANTITATIVE REASONING
      (pp. 107-122)

      The word “quantitative” means measurable in numbers, as opposed to “qualitative,” which refers to verbal description. Although not every aspect of science is quantitative, the sciences are certainly more quantitative than other intellectual pursuits like literature or philosophy. Scientific discourse is also more quantitative than typical everyday conversations. Why should this be so? What is gained by the process of reducing qualities to numbers, and what is lost? One major advantage of quantification is exactitude. Instead of saying that an elephant is heavy or that an atom is small, we can provide a number for the mass of the elephant...

  7. PART III. LARGER QUESTIONS:: THE CONTEXT OF SCIENCE
    • Chapter 9 ULTIMATE QUESTIONS: SCIENCE AND RELIGION
      (pp. 125-132)

      The relationship of science to religion is a broad topic, which has been treated extensively by many profound thinkers. Before starting our brief account, I wish to clarify what is meant by religion here, since it can mean quite different things to different people. I am using the term very broadly to include: organized religions based on well defined creeds, traditional religious beliefs and experiences in a variety of cultures, spontaneous religious experiences that are not within a particular tradition, and so on. Many kinds of religious experience, based on faith, mystical insight, scripture, and authority, are all included. The...

    • Chapter 10 MORE PRACTICAL QUESTIONS: SCIENCE AND SOCIETY
      (pp. 133-144)

      Centuries ago, Francis Bacon eloquently expressed the idea that science would contribute many practical benefits to society in general. Bacon hoped that society would in turn devote resources to science so as to hasten scientific progress. I believe it’s fair to say that Bacon’s vision has come to pass, and this chapter is a brief look at the current situation. Science has brought problems as well as benefits to society, but I don’t dwell much on the problems here because they are dealt with more fully in chapter 11. This chapter simply presents an overview of some basic topics dealing...

    • Chapter 11 DIFFICULT AND IMPORTANT QUESTIONS: SCIENCE, VALUES, AND ETHICS
      (pp. 145-157)

      Questions concerning the relationship of values and ethics to science are extremely important because science affects humans so powerfully. Science affects people in several ways, both directly and indirectly. Some examples of the influence of science are these: the profound changes in worldview that have accompanied major scientific revolutions; the effect of movements like behaviorism and sociobiology on humanity’s self-image; and the indirect effects of science resulting from the technologies enabled by scientific discoveries. Both the direct effects of science and its indirect effects have implications in the realm of values and ethics. The relationship between science and values is...

    • Chapter 12 QUESTIONS OF AUTHENTICITY: SCIENCE, PSEUDOSCIENCE, AND HOW TO TELL THE DIFFERENCE
      (pp. 158-173)

      The prefix “pseudo” comes from a Greek word meaning false, so pseudoscience literally means false science. “Pseudo” also carries an implication of counterfeit or deceptive, making pseudoscience not only false science but also false science that pretends to be real. These simple definitions, however, don’t really tell us much. We may know that pseudoscience is false science, but how do we know whether some particular body of knowledge or set of claims is pseudoscience or genuine science? What criteria do we have to make this determination? No official set of specific standards has been universally agreed upon to distinguish pseudoscience...

    • Chapter 13 CONTENTIOUS QUESTIONS: THE SHADOWY BORDERLANDS OF SCIENCE
      (pp. 174-188)

      Sometimes, results are reported that lie far outside the scientific mainstream. These unorthodox results are rejected by most, but not all, scientists. Although cases like this are occasionally labeled as pseudoscience in order to attack their validity, I believe this label is wrong. As we have seen (chapter 12), the defining characteristics of pseudoscience concern the methods of thinking, not the unlikelihood of the content. Pseudoscience seems an inappropriate description of cases where all parties agree on the validity of basic scientific methodology, even if there is heated disagreement over whether it’s being applied properly. Another label that has been...

    • Chapter 14 VERY ABSTRACT QUESTIONS: THE PHILOSOPHY OF SCIENCE
      (pp. 189-206)

      Scientists go about their work, gathering and interpreting data in order to better understand nature. Rarely does a scientist question the basis for this work. What do we mean by “better understanding”? How do we know our methods are valid and our interpretations correct? Why should we even assume that nature can be understood at all? These are questions of a type that scientists rarely ask. Asking this kind of question is the task of the philosopher of science. Philosophers of science have taken a variety of approaches. For some, the goal has been to ascertain the true nature of...

    • Chapter 15 QUESTIONS OF LEGITIMACY: THE POSTMODERN CRITIQUE OF SCIENCE
      (pp. 207-214)

      A battle is raging in academia over the issue of whether objective knowledge is possible. The opposing camps are not really very well defined, but in broad terms we might say this: the traditionalists, on one side, favor western culture, values that are absolute, and truth; the postmodernists, on the other side, favor multiculturalism, relativism, and a worldview in which truth doesn’t exist. While these caricatures oversimplify the interesting range of issues involved, the ramifications for fields like history, philosophy, and sociology are clear. The sciences have also been drawn into this conflict. Scientists have generally thought of their discipline...

  8. PART IV. COMMON GROUND:: SOME UNIFYING CONCEPTS IN THE SCIENCES
    • Chapter 16 FLEAS AND GIANTS: SOME FASCINATING INSIGHTS ABOUT AREA, VOLUME, AND SIZE
      (pp. 217-229)

      What do the following all have in common: mittens; the chemical industry; your lungs; kindling wood for camp-fires; and the low heating bills of rowhouses? Answer: all these things, and many more, depend on the mathematical relationships between the surface area of an object, its volume, and the characteristic size of that object. These relationships are relatively simple, but their implications aren’t always obvious at first glance. We’ll explore these implications in some detail, and our reward will be an idea that is both simple and powerful, an idea that explains many seemingly unrelated phenomena in many different sciences both...

    • Chapter 17 THE EDGE OF THE ABYSS: ORDER AND DISORDER IN THE UNIVERSE
      (pp. 230-251)

      In the creation myths of many cultures, the divine powers engage in a mighty struggle to impose form on the primordial forces of chaos. The world is a continual struggle to maintain form and order, which forever hovers close to the edge of the abyss. With this mythic and poetic backdrop to remind us of the broad issues underlying our investigation, let’s take a look at how modern science approaches the age-old question of order and disorder in the universe. While the scientific worldview is a bit less poetic, some remarkable insights have emerged from the study of these questions....

    • Chapter 18 RIDING BLAKE’S TIGER: SYMMETRY IN SCIENCE, ART, AND MATHEMATICS
      (pp. 252-273)

      The concept of symmetry plays an important role in all of the natural sciences, playing a particularly fundamental role in physics. This concept is also of prime importance in mathematics, where our intuitive notions of symmetry gain precision and rigor. Symmetry is central to aesthetics and the arts, but also useful in technical work and engineering. Few concepts have such wide-ranging implications. What does the word “symmetry” mean exactly? In general usage, symmetry implies a sense of being harmonious and well balanced. In geometry, it has a more restricted meaning: If you do something to a geometric figure (move it,...

    • Chapter 19 THE STRAIGHT AND NARROW: LINEAR DEPENDENCE IN THE SCIENCES
      (pp. 274-284)

      A basic question in almost any science is this: how does one thing depend on another? In physics, for example, we might ask how an object’s position depends on time, or how a current depends on voltage. In chemistry, we might ask how the rate of a reaction depends on temperature, or how the reactivity of a metal with an acid depends on the pH of the acid. And in biology, we might ask how the metabolism of an animal depends on the amount of some hormone in its blood, or how the growth of a plant depends on the...

    • Chapter 20 THE LIMITS OF THE POSSIBLE: EXPONENTIAL GROWTH AND DECAY
      (pp. 285-294)

      How things change with time is a central question in the sciences. Some examples: how the shape of a riverbank changes with time; how a chemical reaction rate changes with time; how currents and voltages in an electrical circuit change with time; how a population of animals changes with time; how air temperature and rainfall change with time; how the inflation rate of the economy changes with time. These examples represent virtually all of the natural sciences (chemistry, biology, physics, geology, meteorology) and even include a social science (economics). There are many ways in which things can vary with time,...

    • Chapter 21 IN THE LOOP: FEEDBACK, HOMEOSTASIS, AND CYBERNETICS
      (pp. 295-302)

      The presence of feedback, in both natural systems and technological systems, is often at the heart of how these systems function. What do we mean here by the word “feedback?” Before attempting a formal definition, let’s consider a simple example. If we turn a space heater on in a small room, the temperature in the room will simply continue to rise until the room becomes quite warm. There is no feedback in this case. But now suppose that the heater contains a temperature sensing device, which lowers the heat output if the temperature rises (and increases the heat output if...

  9. Epilogue SO, WHAT IS SCIENCE?
    (pp. 303-304)

    I would like to end with some pithy aphorism that sums up in a few words my understanding of what science is. But I don’t believe that’s possible. Every brief attempt I’ve seen to define science has failed to capture some crucial element of the total picture. Even a longer attempt (like this entire book) can’t even begin to include everything that’s worth saying about science. Instead, I’ll end with a story. When I was visiting a group of children (my daughter’s fourth grade class) to do some science activities with them, one of our projects was to find out...

  10. INDEX
    (pp. 305-311)