Skip to Main Content
Have library access? Log in through your library
Hidden Dimensions

Hidden Dimensions: The Unification of Physics and Consciousness

B. Alan Wallace
Copyright Date: 2007
Pages: 176
  • Cite this Item
  • Book Info
    Hidden Dimensions
    Book Description:

    Bridging the gap between the world of science and the realm of the spiritual, B. Alan Wallace introduces a natural theory of human consciousness that has its roots in contemporary physics and Buddhism. Wallace's "special theory of ontological relativity" suggests that mental phenomena are conditioned by the brain, but do not emerge from it. Rather, the entire natural world of mind and matter, subjects and objects, arises from a unitary dimension of reality that is more fundamental than these dualities, as proposed by Wolfgang Pauli and Carl Jung.

    To test his hypothesis, Wallace employs the Buddhist meditative practice of samatha, refining one's attention and metacognition, to create a kind of telescope to examine the space of the mind. Drawing on the work of the physicist John Wheeler, he then proposes a more general theory in which the participatory nature of reality is envisioned as a self-excited circuit. In comparing these ideas to the Buddhist theory known as the Middle Way philosophy, Wallace explores further aspects of his "general theory of ontological relativity," which can be investigated by means of vipasyana, or insight, meditation. Wallace then focuses on the theme of symmetry in reference to quantum cosmology and the "problem of frozen time," relating these issues to the theory and practices of the Great Perfection school of Tibetan Buddhism. He concludes with a discussion of the general theme of complementarity as it relates to science and religion.

    The theories of relativity and quantum mechanics were major achievements in the physical sciences, and the theory of evolution has had an equally deep impact on the life sciences. However, rigorous scientific methods do not yet exist to observe mental phenomena, and naturalism has its limits for shedding light on the workings of the mind. A pioneer of modern consciousness research, Wallace offers a practical and revolutionary method for exploring the mind that combines the keenest insights of contemporary physicists and philosophers with the time-honored meditative traditions of Buddhism.

    eISBN: 978-0-231-51220-6
    Subjects: General Science, Religion

Table of Contents

Export Selected Citations Export to NoodleTools Export to RefWorks Export to EasyBib Export a RIS file (For EndNote, ProCite, Reference Manager, Zotero, Mendeley...) Export a Text file (For BibTex)
  1. Front Matter
    (pp. I-IV)
  2. Table of Contents
    (pp. V-VI)
    (pp. VII-XIV)
    (pp. 1-15)

    In the four centuries since the scientific revolution, scientists have empirically investigated the objective physical world. Philosophers have primarily resorted to reason, backed by empirical scientific research, in their quest to understand the subjective mental world and its relation to the objective world. And theologians have based their understanding of the transcendent world of divine revelation—including angels, heaven and hell, and the nature of the Trinity—on their faith in God and belief in the veracity of his word as revealed through the Bible.

    During those formative centuries of modernity, scientists continually developed effective means of observing physical phenomena,...

    (pp. 16-26)

    Many scientists and philosophers have recently turned their attention to understanding the nature of consciousness, and the great majority of them are determined to provide a “naturalistic” solution to the mind-body problem. But a variety of interpretations of naturalism have been advocated, so before evaluating the merits of specific views of consciousness, let us inspect the background range of perspectives on naturalism.

    According to one common interpretation, naturalism is a view of reality that excludes the possibility of nonphysical agents, forces, or causes. Understanding this requires a close look at the meaning of the terms “physical” and “matter.” During the...

    (pp. 27-35)

    As discussed in the previous chapter, most of the current naturalistic accounts of consciousness that have been devised by cognitive scientists and philosophers are based on a materialistic view of the universe that was prevalent in the late nineteenth century, when the scientific study of the mind began. A central premise of this book is that the lack of a major revolution in the cognitive sciences is due in part to the antiquated notions of physics that underlie most contemporary theorizing about the nature of consciousness. In seeking to understand the role of the mind in nature, psychologists rely on...

    (pp. 36-49)

    For thousands of years, people have been fascinated by the night sky and observed celestial phenomena very carefully, but with the unaided eye, only a few thousand stars can be seen. Everything else remained hidden in the “subconscious” of deep space, beyond the scope of empirical research and therefore confined to the domain of metaphysics until 1609, when Galileo heard of the telescope invented by a Flemish spectacle maker, Hans Lipperhey, and swiftly constructed one for himself. His first attempt produced an eight-power telescope, which he later increased to twenty-power by grinding his own lenses, and he used his new...

    (pp. 50-57)

    Philosophers and scientists have long recognized the illusory nature of perceptual appearances. When we observe the world around us, we see images, such as shapes and colors, that lack physical attributes. The visual image of the color red, for instance, doesn’t have any mass or atomic structure. It isn’t located in the external world, for it arises partly in dependence upon our visual sense faculty, including the eye, the optic nerve, and the visual cortex. There are clearly brain functions that contribute to the generation of red images, but no evidence that those neural correlates of perception are actually identical...

    (pp. 58-69)

    Throughout the nineteenth century, scientific speculations about the existence and nature of atoms were largely metaphysical, with physicists and chemists philosophically arguing their different views. The first compelling proof of the existence of atoms appeared in 1908, when Jean Perrin compared the effects of gravity and Brownian motion (random movement of microscopic particles suspended in liquid) on minerals dissolved in water, and was thereby able to infer the mass of the surrounding molecules causing this motion. Three years later, Ernest Rutherford directed a stream of alpha particles (later identified as positively charged helium atoms) into thin sheets of gold foil....

    (pp. 70-84)

    The preceding two chapters have presented theories and experiments pertaining to our perceptual world of physical and mental phenomena as they are detected by the instruments of science, sensory experience, and introspective awareness of the mind. All such manifestations of mind and matter, I have proposed, emerge from and exist only relative to a subtle dimension of existence of pure forms, or archetypal symbols. I have called this a special theory of ontological relativity. In this and the next chapter I shall present theories and experiments concerning a general theory of ontological relativity that encompasses all possible phenomena, both perceptual...

    (pp. 85-107)

    In the autumn of 1997, a small group of distinguished physicists, astronomers, and philosophers gathered for five days at the Dalai Lama’s home in the foothills of the Himalayas in northern India to discuss the interface of quantum physics, cosmology, and Buddhism.¹ Anton Zeilinger, one of the world’s foremost experts in the experimental foundations of quantum mechanics, was a prominent participant. He is best known for his groundbreaking experiments at the University of Innsbruck that demonstrate quantum teleportation, or the transmission of an exact replica of an arbitrary quantum state to a distant location.² During this meeting, Zeilinger explained to...

    (pp. 108-122)

    We return now to the hypothesis that quantum mechanics is universally correct, which inspired John Wheeler and Bruce DeWitt to adapt the Schrödinger equation as the wave function of the universe. A remarkable characteristic of this equation is that it portrays a universe that does not change with time; physicists call this the problem of frozen time, or simply the time problem. The gist is that the notion of evolution is not applicable to the universe as a whole, for it is assumed that there is no external observer with respect to the universe, and there is no external clock...

  13. NOTES
    (pp. 123-138)
    (pp. 139-148)
  15. INDEX
    (pp. 149-158)